572

6. TOGNOLA S., Berechmung der turbulenten Strdmung in Spalt mit bewegter Wand. Escher Wiss.
Mitteilungen, Vol.53, No.1/2, 1980.

7. GINEVSKII A.S. and KOLESNIKOV A.V., On the theory of motion of rafts in a channel and
a;:otainuzs in delivery conduits. Prandtl's paradox. Izv. Akad. Nauk SSSR, MZhG, No.&,
1980.

8. COLES D.E. and HIRST E.A., Memorandum on data selection. In: Proc. Computation of Turbul-
ent Boundary Layers - AFORS - IFP - Stanford Conference 1969, Vol.2, Stanford: Stanford
University, Calif. 1969, 1968,

9. KOLMOGOROV A.N., Equation of turbulent motion of an incompregsible liquid.
Nauk SSSR, Ser. fiz. Vol.6, No.l—2, 1942.

10. ALBERTSON M.L., DAY J.B., JENSEN R.A. and ROUSE H., Diffusion of submerged jets, - Proc
Amer. Soc. Civil Engn., Vol.74, No.lO, 1948.

11. CONSTANTINESCU V. N., ON tru.bulant lubrication. - Proc. Inst. Mech. Engrs., Vol.l73, No.
38, 1959.

TANANARY A U Flowe in Channala of MEDN Davicas, Masoow, AMAMTIZNAT 1070

- = SN ALY *F Smwwe asd WwesaliltNair VAL danas WSVALRS, FOSUUWs RiVRaguind y L FFFe

12
13. PRANDTL I., On the role of turbulence in technical hydrodynamics. World Eng. Congr.,
Tokyo, pap.504, 1929,

a4 nnnneunm » Minsn wmodamees luadbocn cw o PO U SO
= PR & ey A6 ANKLOGY OSLWeel ST SaWL L1 MuLvaLuln G

flow - J.Fluid Mech., Vol.36, No.l, 1969.
15. NOVOZHIIOV V.V., The plane remote turbulent wake in the light of the generalized Karman
theory, PHM Vol.43, No.3, 1379.

P TN o

yancy

o —"

in turbulent shear

Translated by L.X.

PMM U.S5.S.R.,Vol.47,Noc.4,pp. 572-575,1983 0021-8928/83 $10.00+0.00
Printed in Great Britain © 1984 Pergamon Press Ltd.
UDC 539.3:551,243

ON THE CONDITIONS FOR THE ONSET OF MOTION
OF TWO COLLINEAR DISLOCATION DISCONTINUITIES"

A.S. BYKOVISEV

The conditions under which the motion begins of two collinear disiocatiomal
Volterra-type discontinuities, initally specified on a single straight line
in a homogenecusly isotropic elastic medium, is studied. The theory of
invariant D -~integrals /1/ is used to write the criteria defining the
beginning and direction of motion of either end of the discontinuity. The

limitineg straggsas avre deteymined and the subgemuent hehaviour of the whole
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system is investigated.

Let two generalized dislocational discontinuities of unequal length and constant sudden
change in displacement b (b, b, by) = const be distributed along a single straight line.We intro-
duce the rectangular Cartesian coordinate system in such a manner that the Oz -axis coincides
with the line on which the discontinuities lie, and denote by I, —h, 4, 4 the abscissas
of the ends of the digcontinuity. The problem is assumed to be plane. We will determine the
critical loads which must be applied to the body in order for at least one end of the dis-
continuity to begin to move. The problem in question is an analog of the problem discussed in-
/2/ (on the equilibrium of two collinear cracks) for dislocation discontinuities.

Let us dencte by u,, uy, u, the components of the displacement vector along the =, 7,z axes
respectively, and by 4, Sy, s Gge Oz O the stress tensor components. We also denote the
get of internal po:.nts of the segments (—l, —l) and (& l)of the Oz-axis by L, and the set of
points of the Or-axis outside these segments by M. The boundary conditions of the problenm

have the form
av e form

[wj=bonk, uj=0on M 1)

Problem (1) can be written in the form of the sum of the symmetric, skew-symmetric and
anti-plane problems, by expanding the vector b(b, b, bs) in three terms by(4,0, 0). by (0, 55, 0), by
{0, 0, by). The boundary conditions will have the form (2), (3) and (4) for the skew-symmetric,
symmetric and antiplane problems respectively

Uy =Ygy, Gy =00ONnL; ux=0, oy=0onMH
ty =ty by, Oy =0 0nL; uy=0, oy=00nA

(2)
(3}
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u,=4ybyonk; u;=0onM (4)

We will write the general representation of the solutions of the equilibrium equations
in terms of the complex potentials W;() ({=1,2,3) [8} thus:

2Gu, =y (x+ 1) Imw, + y Re W, (5
2Guy = —(x+1 lew, —yIm W,

Oxy = 2Im W) 4 y Ke Wy, Oy == —~y Re Wy’

Oy = Re Wy —~ y Im W'

for skew-symmetric problems,

2Guy, = Y, (% — 1) Re wy — y Im W, (6)
26uy = Yy (n+ 1) Imw; — y Re W,

Oxx = Re Wy — y Im W', 0Oy = —y Re Wy’

Gy = Re Wy -+ y Im W’

for symmetric problems and
u; = Rew,, Ox = GReWs, 0= —~GInW, N
for the antiplane case. Here wi (2= W;(s) (i=1,2,8); »=3—4v for a plane deformation,
wr ome £2 RadFid L ay
A= (o—aVpaa T V)

for the generalized plane state of stess, ¢ is the shear modulus, v is Poisson'’s ratio, and the
prime denotes differentiation with respect to z.
- Flo BN F Lo 2 Y PON, PR IR R - TP i T, [T Py, W R puey
rom (£)=\{/} wt Lllalll Llue ULliiChisl. prolblicu
Imw; =4;, zel; Imw; =0, z&6 M {8)
265,

A1)

The solution of (8) has the form

(i=1,2)‘ Asz..%.::;

;=

(ot 9) G 2)
v = 4, e =G )

Substituting {9) into (5)—{(7) we obtain the following stress field for the generalized
dislocation discontinuities:
o=0@—lyy)—0@E—~1yy) +olE+b ) ~0(+hp (10)

where the components of the stresses o¢(z, y) have the form

Ogx = 171 [—A, 8in @ (2 -+ cos 2¢) 4 4, cos ¢ cos 2} (11)
Oy = "1 {—4, sin ¢ cos 20 -+ 4, cos ¢ (2 — cos 2¢}]
Oxy = 2 cos 2 (4, o8 9+ 4388 9}, oy = 74,008

Ogx = —r 1 Ag8in @
=V I ‘Pnarc.tg—:‘

The onset and direction of the motion of any end of the dislocation discontinuities will
be found using the invariant [F- integrals /1/

T, = :S [Un, — 6,54, ;1% (12)

Here U is the elastic potential of unit volume, I is an arbitrary small contour embrac-
ing the end of the dislocational discontinuity in question, n», are the components of the unit
vector normal to the contour, and double indexing with the obvious meaning (4,2,3) — (2, ». 3) is
used.

We assume that an external stress field with components o7 is applied to the body at
infinity. Then relations (10)—{(12) yield the following expressions for the T -integrals
for every end of the dislocational discontinuities:

T =ty (0], + AT o By (0} o+ AaT') + by (6, + 4o (13)
1 . ® ! .
T = by (5 + AT — by (63, + AT — bys,
where
r-l: e _1- + __._.f".___. rol, 1 Gy
101 &+ o+ ay) (4 + ag)° =~ a t alm e (14)
Mo e 8 : L -
ae+(a1+az+as)(az+aa)’ M= — aa+ae(ax+aa)

G bt b, =i~y ag=ly+ I,
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Bere o, and 4, denote the lengths of the left and right discontinuity while 4, is the distance
between them.

The cendition for the onset of motion of the end of a discontinuity can be written in
the form {I'|=TI. (when |T|<l., the end of the discontinuity will be at rest). Here =
I'ei+ Ty, T is the experimentally determined constant of the mediunm.

The direction of motion of the ends of the discontinuity is given by the expression

8, = aretg (T, VT

Let us study in more detall the case when b,=0, by=153=0, 05" %0, O4y° = 0" = 0" = 0p5° =0,
i.e.,the skew-symmetric discontinuities are acted upon by tangential stresses only. Such dis-
continuities are of interest in theoretical seismology in modelling the processes taking place
in the danger zone prior to an earthquake. In this case we find that

I‘yl‘ = 0,
for all tips, i.e. at the initial stage the discontinuities can move only along the 0Oz -axis
on which they are situated.

Relations (13) and (14) show that the values of the T -integrals depend essentially on
the size of the discontinuities and the distance between them. Let us assume that a,>a,
i.e. consider the case when a finite discontinuity interacts with a semi-infinite one. Then
from (14) we obtain

-y I fae do o i 15
im0 = SEty >0 M R <0 2
pls o 2% {>0, >0

T a0, a<a

and from (13
m 13 T = by (On® + ATH

The estimates (15) show clearly that when o.,°=0, the criterion for the onset of pro-
pagation of the discontinuity (depending on the parameters of the discontinuities themselves)

T, = b, T (16)

will hold, in the first instance, for the end with abscissa —Il,, then for the point 1, and
finally for . If on the other hand the discontinuity parameters are such that the criterion
{16) does not hold when o4° =0, then the body may be in a state of equilibrium provided that
additional stresses o4° are applied to it. Then the magnitude of the limiting stresses ox*,
for which it becomes possible that the ends with abscissa —i, most predisposed to move will do
s0, is given by the raelation

Ony® = (Tc — by, T9/8, (17

Thus the interaction between a semi-infinite discontinuity with a discontinuity of finite
length can be described as follows. When the external stress field o,° is increased, the
first to move will be the end of the semi-infinite discontinuty (when the stresses reach the
value on* given by the formula (17)). This end will move towards the finite discontinuity,
the distance between the ends of the discontinuities will decrease and hence I% will increase.
It follows that at some instant when the condition

Oy = (To — by, /0y
begins to hold, the left eand of the small discontinuity will begin to move towaxds the moving
end of the semi-infinite discontinuity. It is only after both ends merge (i.e. after the
barier separating them is breached), that motion of the right end of the smaller discontinuity
will become possible.

The rate of motion of one end relative to the other will increase in a step-wise manner.
This implies that, in particular, the rate of joining or merging of the discontinuities may
be greater than the velocity of the longitudinal and transverse waves within the medium.
Finally, we find that when we have a large and a small discontinuity separated by an arbitrar-
ily large distance, the larger discontinuity will always show a tendency to merge with the
smaller one. At the same time, the small discontinuity will behave with complete independence
until the distance separating the discontinuities beccomes less than its length, whereupon it
will begin to move towards a merger with the large discontinuity. The effect of the inter-
action between the dislocation discontinuities is analogous to that of the interaction between
collinear cracks /2/ and serves as another obvious confirmation of the fact that the behaviour
of the dislocational discontinuities is formally analogous to the behaviour of cracks, a fact
demonstrated by the analogs of the Griffith and Yoffe problems for dislocational discontinuit~
ies in /4—~6/.
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ON THE REMAINDER TERMS IN THE FORMULAS FOR THE
FREQUENCY DISTRIBUTION OF SHELL OSCILLATIONS®

A.G. ASLANIAN

The frequency distribution of free oscillations of thin elastic shells in
vacuo and in contact with a liguid, is studied. Estimates for the remainger
terms in the asymptotic formulas for the oscillation frequency distribution
are substantially improved. In the case of a shell in contact with a
liguid, the second term of the asymptotics is separated.

Free oscillations of a thin elastic shell are described by a system of three differential
equations in terms of the displacements /1/

(442N -+ L) u = Aty & = ({ — 0%) pE-3? (1)

The vector function ui{e, d), (o, P= 6 satisfies certain selfconjugate boundary conditions at
the shell boundary, 2 is the shell thickness (small parameter), A is the spectral parameter
and o is the natural shell oscillation frequency. The remaining notation is taken from /l/.
Let nn(M be the spectrum distribution function of problem (1) (equal to the number of
eigenvalues less than the given A). Using the variational method as h—+0 we obtain /1/
the asymptotic formula
ny (&) = k2 [ey (A) + O (W] (2}

- 25
oA = %—é—z— SS S Re (A — Q8. a, B))/1 d6dS
29, a b= u — 0% [Ryt (o, B)sint € -+ Ry (@, B) cos® B

where x 1is a positive number. A rough lower estimate was given for it in /1,2/.
By improving the variational technique, we succeeded in showing that when

Lissup QB o

Ay 8= 921 in Rie o
=P » Fh 2 e =

= 1Y &G, &

o~
L
[

formula (2) holds with »x=1%; g, for arbitrarily small positive e.

1f condition (3) does not hold, then the value of x.decreases and depends on the amount
of "degeneration" of the function g¢g=Ai-Q(, a,f). For example, if ¢ is integrable, 6e [0,
2n}, (o, B) =G (simple degeneration), formula (2) holds for x = 5/22.

In the same manner we can improve the estimate of the remainder in the problem of free
oscillations of a shell in contact with an ideal compressible liguid /3/. 1In this problem we
add to the right-hand side of the third equation of (1) the term —h ippcire Is {the inertia of
the liquid). The potential oz, ¥ 3 of the displacement of the liguid occupying a finite
volume ¥, satisfies the Helmholtz eguation

E
AP+ kpp =0, (z,p,2) EV: Fy =

(1 — oo,
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